Re: [CR]More about Silver vs Brass

(Example: Component Manufacturers:Chater-Lea)

From: <>
Subject: Re: [CR]More about Silver vs Brass
Date: Tue, 27 Sep 2005 20:57:01 +0000

Ouch....I think there be a logic problem here...

The claim that the stress riser being lower down improves fatique life does not follow. Where the weakest point of the joint is may well become irrelevant if all parts of the joint are now much less prone to fatique failure than they would be with brass brazing.

Again, it comes down what others have said - it is not what methods or materials are used, but rather how appropriately the material of choice is used in the application. And the mention that after testing it was decided to "shine" the lugs seems to confirm that the lugs may not have been really "clean" on the failed joints. Of course, too much "shining" (by use of a reamer or grinding) and the tolerances of the lugs could be shot with respect to use of silver braze.

Mike Kone in Boulder CO

-------------- Original message --------------




\r?\n> OK - I spoke with Bill Davidson about his recollections of this test and as

\r?\n> usual, he remembers a lot more detail than I do. I had most of it right but

\r?\n> I hate to say Brian is correct and I remembered wrong on one point. None of

\r?\n> the silver joints pulled away from the tubes in this particular test. More

\r?\n> about that in a second.


\r?\n> The device we used was borrowed from Charlie Cunningham. Just as I said, it

\r?\n> held the front triangle rigidly while a lever was used much as a fork would

\r?\n> be in a front end crash, to wrinkle the front end, using a hydraulic jack as

\r?\n> the power. A strain gauge was hooked up to this to measure the force

\r?\n> required, which would tell you how resistant the frame was against an impact.

\r?\n> The

\r?\n> absolute amount of force required is irrelevant due to the leverage involved,

\r?\n> only the relative differences are significant. Here are the results that

\r?\n> Bill remembers: With Silver, the frame wrinkled right near the points of the

\r?\n> lugs. With brass, it wrinkled about 1 cm down from the lugs. This didn't

\r?\n> change with the different tubing or lugs, just with silver vs brass. This is

\r?\n> as

\r?\n> you might expect, since brass requires a higher temperature than silver and

\r?\n> so the heat affected zone is further out. Bill says this is significant

\r?\n> because it means that the weakest point of the tube, the margin of the

\r?\n> heat-affected zone, is right near those nasty stress risers - the points of the

\r?\n> lugs -

\r?\n> in a silver brazed frame. In a lifetime of flex cycles, if it is going to

\r?\n> break from fatigue, that is where it will go first. We have seen a lot of

\r?\n> frames go like that. The brass-brazed frame which wrinkles farther down,

\r?\n> would

\r?\n> at least be stronger or at least more uniform where the points are and less

\r?\n> likely to be taken out by fatigue cycles.


\r?\n> Another significant thing Bill mentioned: Remember I told you about brazing

\r?\n> with a big rosebud torch to preheat the joints so you can do it faster? We

\r?\n> did some that way and some the usual way with only a small torch. Bill said

\r?\n> the preheated joints withstood a lot more force according to the strain

\r?\n> gauge, although ultimately they failed in the same manner. That means the

\r?\n> frame

\r?\n> should be able to survive a somewhat harder impact. Since we only braze this

\r?\n> way with brass (too much heat for silver) that is a point in brass's favor.


\r?\n> Now back to those silver joints coming apart. I didn't make this up. It

\r?\n> just didn't happen during this test. We get a lot of crashed bikes in for

\r?\n> repairs, and Bill says he has seen many frames brazed with silver pull apart

\r?\n> during a crash. Not just ours, but from other very well known builders too. I

\r?\n> should point out that we have used Silver to braze also for many years on very

\r?\n> light tubing. I have seen a number of these too, and somehow remembered them

\r?\n> as being in the test. Some particular lugs are more prone to this than

\r?\n> others. The Otsuya lugs that we used back the early 80s had very small surface

\r?\n> area behind the head tube, and these were more prone to coming apart, as you

\r?\n> might expect. I crashed my Davidson with these lugs in a high speed front

\r?\n> ender in 1988, and while it did wrinkle the frame pretty good, it didn't come

\r?\n> apart. Luck of the draw I think. I straightened and rode it a bit more, and

\r?\n> it eventually the .7/.4 Prestige downtube cracked so I rebuilt it. Bill has

\r?\n> seen a number of times where when the joint pulled apart, it left a thin

\r?\n> layer of steel on the brazing material. He suggests that this has something to

\r?\n> do with how the metal cooled in the investment casting process, leaving a weak

\r?\n> surface layer. He started shining up the inside of lugs when he noticed

\r?\n> this to remove that shear layer.


\r?\n> Conclusions? Draw your own. It still seems to me that a frame can be

\r?\n> stronger when brazed with brass and using a preheat torch in the hands of a

\r?\n> good

\r?\n> brazer who can do it quickly, but there is nothing wrong with silver as long

\r?\n> as you don't plan to crash it. And if you crash, well, the frame is probably

\r?\n> the least of your worries.


\r?\n> Ride safe



\r?\n> Bob Freeman

\r?\n> Elliott Bay Bicycles

\r?\n> 2116 Western Ave

\r?\n> Seattle, WA 98121

\r?\n> 206-441-8144

\r?\n> Home of Davidson Handbuilt Bicycles



\r?\n> In a message dated 9/24/2005 11:31:13 P.M. Pacific Standard Time,

\r?\n> writes:


\r?\n> I would have to see the testing device, the way you bulit the "test

\r?\n> triangles", and a whole lot more before I would believe your story. No properly

\r?\n> brazed silver joint will fail before the tube in an impact. Seen lots of them.

\r?\n> Seen more broken joints (where tube did not break but braze joint did, which is

\r?\n> just as wrong with brass as with silver) on brass brazed frames than with

\r?\n> silver by quite a large margin. I've seen a good number of relavatively poorly

\r?\n> brazed silver joints not fail after impact. It sounds to me like you tested a

\r?\n> bunch of improperly brazed silver joints. Probably better to use brass in

\r?\n> that situation, but properly silver brazed joints have at least equal strength

\r?\n> to those of brass.


\r?\n> For those of you out there who do not or have not built a good number of

\r?\n> frames; there is no way to really decide which information is closeset to the

\r?\n> truth. Since I happen to know what I've seen and experienced, I know for sure I

\r?\n> don't buy this particular story.


\r?\n> It is obvious that good bikes and excellent bikes can be made useing either

\r?\n> method and that the primary factor in that is the ability of the builder and

\r?\n> their intentions towards producing a quality product. But there is such a

\r?\n> thing as reality. 700 frames a year is not the place for silver. Silver is for

\r?\n> those individually producing handmade frames with traits and features that

\r?\n> aren't part of low production work. It's a different world, different

\r?\n> circumstances. Like I said, good that you did some testing and concluded that

\r?\n> for your

\r?\n> circumstances brass worked better for you. Silver works better for the type

\r?\n> of work I do.


\r?\n> Brian Baylis

\r?\n> La Mesa, CA

\r?\n> Show me, talk is cheap.


\r?\n> -- wrote:

\r?\n> I came into this thread late but I thought I would share a couple of

\r?\n> tidbits.

\r?\n> In the mid-80s, when we (Davidson Cycles) were building around 700 frames

\r?\n> per

\r?\n> year, we wanted some idea of what was going to happen to them in a crash, so

\r?\n> borrowed a destructive testing device (I forget who had it. Bicycling Mag,

\r?\n> maybe?) that simulated a front end crash. Made a bunch of front ends to

\r?\n> test in

\r?\n> it, with all different materials and methods but otherwise the same, and

\r?\n> found, almost without exception, that the joint failed (came apart) when

\r?\n> done with

\r?\n> silver, and the tube failed behind the intact joint when brazed with brass.

\r?\n> What does that tell you? Well, given a hard enough impact you will destroy

\r?\n> a

\r?\n> steel bike no matter, but the brass did make a stronger joint. Yes you can

\r?\n> braze at a lower temperature with silver, but if you are burning the snot

\r?\n> out of

\r?\n> it getting it to move around then you will do a lot more harm. I think an

\r?\n> experienced builder using brass will build a much superior bike to a rookie

\r?\n> with

\r?\n> silver.


\r?\n> It is not only the absolute temperature that is reached that degrades the

\r?\n> steel, it is the length of time at that temperature. The longer it stays

\r?\n> hot,

\r?\n> the farther away from the joint the heat affected zone travels. It is that

\r?\n> margin of the heat affected zone that is where a frame will usually fail in

\r?\n> a

\r?\n> crash. Keeping it closer to the lug, in the butted section, makes it more

\r?\n> likely

\r?\n> to withstand a crash. So brazing it quickly is the answer to making the

\r?\n> strongest frame. We developed a way to braze them very quickly. We don't

\r?\n> do a lot

\r?\n> of lugged steel frames any more so I don't mine sharing the tricks. We made

\r?\n> little rings of brass that were the shape of the inside of the joint, and

\r?\n> assembled the frame with them in there. The joint is heated quickly and

\r?\n> evenly

\r?\n> with a large, broad flame until red hot. You can see the brass ring in

\r?\n> there as

\r?\n> a shadow. Once it is gone you know the brass has melted, we switch to a

\r?\n> small

\r?\n> torch and work the heat around until brass comes out all the edges evenly,

\r?\n> and voila, you are done. Almost no cleanup involved afterwards. A few of

\r?\n> our

\r?\n> brazers would use the big torch in one hand and the small torch in the

\r?\n> other.

\r?\n> We had fork crowns made with a shelf that the steerer butted against, and

\r?\n> stamped out washers of brass that fit right in there and did the same thing

\r?\n> for

\r?\n> the crown to steerer braze, and had rings inside the blade sockets too. Two

\r?\n> guys could braze up 30 steerer, crown, blade assemblies an hour that way.

\r?\n> Again

\r?\n> with almost no cleanup. And it leaves a little fillet of brass on the

\r?\n> inside

\r?\n> of the joint too to further strengthen it. You would never get penetration

\r?\n> that good by brazing from the outside only, and not nearly as fast.


\r?\n> Another tidbit, and all framebuilders know this, but 853 Reynolds is always

\r?\n> brazed with brass. It doesn't get hot enough for the air-hardening to

\r?\n> happen

\r?\n> with silver.